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Spacecraft Trajectory Estimation
Using a Sampled-Data Extended Kalman Filter

with Range-Only Measurements

R. Scott Erwin and Dennis S. Bernstein

Abstract— Determining the trajectory of a body orbiting
the Earth is a fundamental task in astrodynamics. In this
paper we use a sampled-data extended Kalman filter to
estimate the trajectory of a target satellite when only range
measurements are available from a constellation of orbiting
spacecraft. We consider the ability of the filter to acquire
the target satellite under time-sparse measurements, and to
estimate the eccentricity and inclination of the target satellite’s
orbit. Our goal is to quantify tradeoffs among acquisition time,
tracking accuracy, and measurement sample rate. In addition,
when the orbits of the observing spacecraft are all equatorial,
it is found that inclination maneuvers of the target satellite
are unobservable.

1. INTRODUCTION

The problem of estimating the full state of a dynamical
system based on limited measurements is of extreme impor-
tance in many applications. For the case of a linear system
with known dynamics, the classical Kalman filter provides
an optimal solution [1, 2]. However, state estimation for
nonlinear systems remains a problem of intense research
interest.

Besides their value in estimating the state of a system
with nonlinear dynamics, nonlinear estimators can also be
used to estimate constant states that represent parameters.
Consequently, nonlinear filters are useful for system iden-
tification [3]. One of the key issues that arises in this
application is parameter bias, a longstanding problem [4].

Optimal nonlinear filters have been studied [5], but are
often infinite dimensional and thus are difficult to imple-
ment. Within a deterministic setting, nonlinear observers
have been developed for systems of special structure [6,
7]. Consequently, except for systems of special structure,
approximate filters are usually implemented in practice.

There are two main approaches to approximate nonlinear
filtering. The first approach is based on a linearization of
the nonlinear dynamics and measurement mapping. For
example, the extended Kalman filter uses the nonlinear
dynamics to propagate the state estimate while using the
linearized dynamics and linearized output map to propagate
the pseudo-error covariance. The extended Kalman filter is
often highly effective, and documented applications cover
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an extraordinarily broad range of disciplines, from motor
control to weather forecasting [8, 9].

Although the extended Kalman filter was originally
conceived within a stochastic setting, recent research has
provided a foundation for viewing the extended Kalman
filter as a deterministic observer [10–12]. The idea is to
adopt or modify the formalisms of the extended Kalman
filter while determining conditions that ensure stability and
convergence. Although the sufficient conditions are often
conservative for specific applications, these results provide
an intellectual rationalization for the extended Kalman filter
formalism

The second approach to approximate nonlinear state
estimation foregoes an explicit update of the state estimate
error covariance in favor of a collection of filters whose
response is used to approximate the state estimate error
covariance. These statistical approaches include the particle,
unscented, and ensemble Kalman filters [13–15].

The present paper is concerned with state estimation for
satellite trajectory estimation, which, for unforced motion,
is equivalent to orbit determination [16]. Since orbital
dynamics are nonlinear, nonlinear estimation techniques are
needed. A wide variety of problems can be considered
based on the type of data that are available, including angle
(azimuth and elevation), range, and range rate. The use of
angle-only data is considered in [17], which develops a
specialized filter to exploit the monotonicity of angles in
orbital motion. Issues that arise in the use of range-rate
(doppler) measurements are discussed in [18, 19].

Orbit estimation with measurements provided by a con-
stellation of satellites is considered in [20, 21]. One sce-
nario (TDRSS) considers the use of observing satellites in
circular, equatorial, geosynchronous orbits to track satellites
in low-Earth orbit, while another scenario (GPS) involves
the use of a constellation of satellites with pseudo-range
measurements (range measurements with clock error biases)
to determine the location of the user.

In the present paper we consider the use of a constellation
of satellites in low-Earth orbit to track a satellite in geosyn-
chronous orbit. Since the observing satellites have much
smaller period than the target satellite in geosynchronous
orbit, we must account for blockage by the Earth, and
thus the number of available measurements varies with
time. We are particularly interested in the ability of the
observing satellites to acquire and track the target satellite



when measurements are available at low frequency, that is,
with a large sample interval.

Unlike the study in [20, 21], which considers either angle
(two observations per satellite), angle and range (three
observations per satellite), and angle, range, and range rate
(four observations per satellite), we consider the case in
which only range measurements are available (one obser-
vation per satellite). In addition, the sample rate in [20] was
chosen to be 33 Hz, while we are interested in the ability
to track under time-sparse measurements, available on a
scale of only minutes or perhaps hours. This constraint is
motivated by the need for satellites to simultaneously track
a large number of objects.

As in [20, 21], we employ the sampled-data (continuous-
discrete) extended Kalman filter [2, p. 188]. This extended
Kalman filter involves continuous-time propagation of the
state estimate as well as the pseudo-error covariance be-
tween measurements and data updates. In practice, the
continuous-time state and covariance propagation can be
implemented online with high-resolution integration to ac-
curately follow the nonlinear dynamics.

2. EQUATIONS OFMOTION

We consider a single body, called thetarget, orbiting
the Earth. Throughout this study we assume that the Earth
is spherical and uniform with an ideal gravitational field.
Except for possible thrusting by the target itself, we ignore
all perturbing forces such as drag. The position vector

→
r of

the target with respect to the center of the Earth satisfies

→̈
r =

−µ

r3

→
r +

→
w, (1)

wherer
4
= |

→
r | is the distance from the satellite to the center

of the Earth,
→
w denotes forces due to thrusting per unit mass

acting on the target, andµ
4
= 398, 600 km3/s2 is the Earth’s

gravitational parameter. The specific thrust
→
w is zero unless

the target is actively maneuvering. Introducing the velocity

vector
→
v

4
=

→̇
r , we can rewrite (1) as

→̇
r =

→
v , (2)

→̇
v =

−µ

r3

→
r +

→
w. (3)

To cast the dynamics (3) in terms of coordinates, we
introduce an inertial reference frame I. It is traditional to
choose the inertial reference frame so that theX-axis points
toward the Sun on the first day of spring (the vernal equinox
line), theZ-axis points through the North pole of the Earth
along the axis of rotation, and theY -axis completes a right-
handed coordinate system. This description is approximate
since the Earth’s rotational axis is not fixed inertially and
since the stars move inertially as well [22, pp. 150–153].
However, such details do not play a role in the subsequent
analysis.
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the equations of motion (3) become
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Note thatr =
√

x2 + y2 + z2. We can rewrite (4) as
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(6)

The vector X provides a complete representation of
the target’s state, which is characterized by the position
and velocity. When the satellite is moving along an orbit,
such as a circle, ellipse, parabola, or hyperbola, it is often
useful to represent the satellite motion in terms of the 6
orbital parameters given by the perigee distancerp, the
eccentricitye, the right ascension of the ascending node
Ω, the inclinationi, the argument of periapsisω, and the
true anomalyν. The orbital elementsrp ande fix the shape
of the orbit, while the anglesΩ, i, andω comprise a(3, 1, 3)
sequence of Euler rotations that transform the inertial frame
to the inertially fixed frame. The true anomalyν(t) is a
time-dependent parameter that keeps track of the position
of the satellite along its orbit. The nonlinear transformations
that convert position and velocity into orbital elements and
vice versa are given in [22].

3. MEASUREMENTMODEL

For trajectory estimation, we assume that range measure-
ments are available fromp satellites at timest = kh, where
k = 1, 2, . . . . Letting xi, yi, zi denote the inertial coordi-
nates of theith satellite, assumed to be known accurately,
the measurementY = Y (kh) ∈ R

p is given by (omitting
the argumentkh on the right-hand side)

Y (kh) =







d1(x, y, z, x1, y1, z1)
...

dp(x, y, z, xp, yp, zp)






+ v, (7)

where, fori = 1, . . . , p,

di(x, y, z, xi, yi, zi)
4
=

[(x − xi)
2 + (y − yi)

2 + (z − zi)
2]1/2 (8)



is the distance from theith satellite to the target, andv ∈ R
p

denotes measurement noise.
The measurementdi is assumed to be unavailable when

the line-of-sight path between theith satellite and the target
is blocked by the Earth. To determine blockage, we note that
the Earth’s surface blocks the path from theith satellite to
the target if and only if there existsα ∈ [0, 1] such that

Di(α) < RE, whereRE
4
= 6378 km is the radius of the

Earth and

Di(α)
4
=

√

(xi + αx)2 + (yi + αy)2 + (zi + αz)2.

The smallest value ofDi(α) as attained forα = αi, where

αi
4
= −

xix + yiy + ziz

x2 + y2 + z2
.

Hence, we computeαi, ascertain whetherαi lies in the
interval [0, 1], and then check the blockage condition
Di(αi) < RE.

4. SAMPLED-DATA EXTENDED KALMAN FILTER

Since the equations of motion (1) are nonlinear, we
consider an extended Kalman filter. In addition, since we
assume that measurementsY are available with a specified
sample interval ofh sec, we consider a sampled-data
extended Kalman filter with data update performed at each
time t = kh. The sampled-data (“continuous-discrete”)
extended Kalman filter is given in [2, p. 188]. We use “-
” and “+” to denote state estimates before and after data
updates, respectively.

4.1. Forecast Step

The forecast (data-free) step of the sampled-data ex-
tended Kalman filter consists of the state-estimate propa-
gation

˙̂
X(t) = f(X̂(t)), t ∈ [(k − 1)h, kh], (9)

where

X̂
4
=

[

x̂ ŷ ẑ v̂x v̂y v̂z

]T
, (10)

as well as the pseudo-error covariance propagation

Ṗ (t) = Â(t)P (t) + P (t)ÂT(t) + Q, t ∈ [(k − 1)h, kh],
(11)

whereÂ(t)
4
= f ′(X̂(t)) is the Jacobian off evaluated along

the trajectory of (9). The Jacobian̂A(t) is given by

Â(t) =

[

03×3 I3

Â0(t) 03×3

]

,

where (omitting the argumentt)
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4
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,

wherer̂
4
=

√

x̂2 + ŷ2 + ẑ2.

Equations (9) and (11) are numerically integrated in real
time. Since there is no data injection during the time interval
[(k − 1)h, kh], variable-step integration can be used for
efficiency and accuracy. Let̂X(kh−) andP (kh−) denote
the values ofX̂ and P at the right-hand endpoint of the
interval [(k − 1)h, kh]. At the start of the next interval
[kh, (k + 1)h], the initial valuesX̂(kh+) andP (kh+) are
determined by the data update step. The overall system can
be viewed as a sampled-data system in which continuous-
time dynamics are interrupted by instantaneous state jumps
[23].

4.2. Data Update Step

For the data update step, the linearized measurement map
is given by

Ĉk
4
=









x̂(kh−)−x1(kh)

d̂1(k)

ŷ(kh−)−y1(kh)

d̂1(k)

ẑ(kh−)−z1(kh)

d̂1(k)
01×3

...
...

...
...

x̂(kh−)−xp(kh)

d̂p(k)

ŷ(kh−)−yp(kh)

d̂p(k)

ẑ(kh−)−zp(kh)

d̂p(k)
01×3









,

where, fori = 1, . . . , p,

d̂i(k)
4
= di(x̂(kh−), ŷ(kh−), ẑ(kh−), xi(kh), yi(kh), zi(kh)).

Furthermore, the data update gainKk is given by

Kk = P (kh−)ĈT
k [ĈkP (kh−)ĈT

k + R]−1, (12)

while the state-estimate data update is given by

X̂(kh+) = X̂(kh−) + Kk[Y (kh) − d̂(k)], (13)

where

d̂(k)
4
=







d̂1(k)
...

d̂p(k)






.

Finally,
P (kh+) = (I − KkĈk)P (kh−).

The valuesX̂(kh+) andP (kh+) are used to initialize (9),
(11) in the next interval[kh, (k + 1)h].

5. NUMERICAL EXAMPLES

We consider the case in which satellites in low-Earth
orbit (LEO) at a radius of 6600 km are observing a target
satellite in an equatorial geosynchronous orbit at a radiusof
42,164 km. We assume that the LEO satellites are spaced
uniformly around the Earth in an equatorial orbit. With
this arrangement, 4 is the smallest number of satellites for
which at least 2 satellites are always able to simultaneously
view the target. Target tracking with as few as 2 satellites
separated by a true anomaly of less than 180 degrees is
also possible as long as measurements are guaranteed to
be available when the target is in the field of view of
both satellites. However, for simplicity, we assume the
availability of 4 uniformly spaced LEO satellites with range



measurements available (subject to blocking by the Earth) at
a fixed sample interval ofh sec. All satellite measurements
(blocked or not) are assumed to occur simultaneously.

Assuming perfect knowledge of the initial condition and
assuming that the target is not maneuvering, it is possible
to track the target with arbitrary accuracy without the use
of measurements. In practice, perturbing forces such as
drag must also be estimated; however, these forces are
not considered in this study. When the initial state is
unknown or when the target is maneuvering, measurements
are needed to track the target. We consider these cases
separately.

6. TARGET ACQUISITION

We first consider the ability of the sampled-data Kalman
filter to acquire the target, that is, to locate the target despite
initial position errors. In all cases we setQ =

[

0 0
0 I3

]

, and
P0 = 0.

First, we set the sample interval to beh = 1 sec, and we
consider initial estimates that are erroneous by 1 degree and
110 degrees. We assume perfect (nonnoisy) measurements
and setR = 0.01I in (12). Figure 1 compares the perfor-
mance of the filter for both initial estimates. The ultimate
tracking accuracy in both cases is determined by numerical
resolution in computing the state estimates. Convergence of
the filter is not global; in fact, the filter fails to converge for
initial true anomaly errors greater than about 120 degrees.

Next, we introduce gaussian measurement noise with a
standard deviation of0.1 km, which corresponds toR =
0.01I in (12). For initial estimates that are erroneous by 1
degree and 110 degrees, Figure 2 shows that the position-
estimate error reaches a level that is consistent with the
measurement accuracy.

For an initial true anomaly estimate that is erroneous by
110 degrees, the position estimates are shown in Figure 3.
The estimator approaches the vicinity of the target within
about 10 sec.

Next we consider the ability of the filter to acquire the
target under time-sparse measurements with a measurement
standard deviation of0.1 km. For an initial true anomaly
error of 10 degrees, Figure 4 shows the position-estimate
errors forh = 1, 10, 50, 100 sec. In each case, the estimator
acquires the target in about 10 data assimilation steps, with
ultimate accuracy independent of the sample interval.

7. INTERMEASUREMENTTRACKING ACCURACY

Next, we assess the ability of the filter to track the target
along its orbit. To see how the position estimate degrades
between data updates, we consider an initial true anomaly
error of 10 degrees and a sample interval of 50 sec with
measurement noise having a standard deviation of 0.1 km.
Figure 5 shows the growth of the position error between
measurements as well as the position-error reduction that
occurs due to data injection.
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Fig. 1. Target position- and velocity-estimate errors withinitial
true anomaly errors of 1 degree and 110 degrees. The range data
are measured with a sample intervalh = 1 sec from 4 LEO
satellites, and perfect (nonnoisy) measurements are assumed with
R = 0.01I in the filter gain expression (12). In both cases the
estimator accurately locates the target within about 50 sec.
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Fig. 2. Target position- and velocity-estimate errors withinitial
true anomaly errors of 1 degree and 110 degrees. The range data
are measured with a sample intervalh = 1 sec from 4 LEO
satellites, and with gaussian measurement noise whose standard
deviation is0.1 km and thus withR = 0.01I in the filter gain
expression (12). In both cases the estimator accuracy corresponds
to the measurement error level.

8. ECCENTRICITY ESTIMATION

We now consider the case in which the target performs
an unknown thrust maneuver that changes the eccentricity
of its orbit. The initial true anomaly error in all cases is 10
degrees. In particular, the target is initially in a circular orbit
as in the previous examples. At timet = 100 sec, the target
performs a 1-second burn that produces a specific thrust
w = [0 .5 0]T km/s2, and, at timet = 200 sec, the target
performs a 1-second burn that produces a specific thrust
w = [0 .3 0]T km/s2. With an initial eccentricity ofe = 0,
corresponding to the initial circular orbit, the eccentricity
after the first burn ise ≈ .35, while the eccentricity after
the second burn ise ≈ .59. Assuming measurement noise
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The range data are measured with a sample intervalh = 1 sec
from 4 LEO satellites (whose tracks are shown), and with gaussian
measurement noise whose standard deviation is0.1 km and thus
with R = 0.01I in the filter gain expression (12). The estimator
approaches the vicinity of the target within about 10 sec. The Earth
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with a standard deviation of0.01 km and measurements
available with a sample interval ofh = 1 sec, the estimated
eccentricity based on the data update estimates is shown in
Figure 6. The same scenario is repeated withh increased
to 10 sec, with the results shown in Figure 7.

9. INCLINATION ESTIMATION

We now consider the case in which the target performs
an unknown thrust maneuver that changes its inclination.
The initial true anomaly error in all cases except where
noted is 30 degrees. In particular, the target is initially in
a circular equatorial orbit as in the previous examples. At
time t = 100 sec, the target performs a 1-second burn that
produces a specific thrustw = [0 0 .5]T km/s2, and, at
time t = 200 sec, the target performs a 1-second burn that
produces a specific thrustw = [0 0 − .2]T km/s2. With an
initial inclination of i = 0 rad, corresponding to the initial
equatorial orbit, the inclination after the first burn isi ≈
0.16 rad, while the inclination after the second burn isi ≈
0.097 rad. Assuming measurement noise with a standard
deviation of 0.01 km, the estimated inclination based on
the data update estimates is shown in Figure 8.

Figure 8 shows that, after a transient, the filter correctly
converges to the target’s inclination of0 rad. However, the
filter fails to detect the changes in inclination due to the
target’s maneuvers. This failure suggests that the out-plane-
maneuver is due to a lack of observability by the observing
satellites. In fact, the numerical rank of the observability
matrix formed from(Â(kh−), Ĉk) is found to be 4.
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Fig. 4. Target position-estimate error for sample intervals h =

1, 20, 50, 100 with range data measured from 4 LEO satellites
with a standard deviation of0.1 km. In each case, the estimator
acquires the target in about 10 data assimilation steps, with ultimate
accuracy independent of the sample interval.
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Fig. 5. Target position-estimate error with an initial trueanomaly
error of 10 degrees, a sample interval ofh = 50 sec, and a
measurement noise standard deviation of0.1 km. The growth of
the position error between measurements can be seen, as wellas
the position-error reduction that occurs due to data injection.

Next, we slightly change the orbit of the first observing
satellite by giving it an inclination of−0.1 rad. Figure
9 shows a strong transient that prevents the filter from
estimating the initial0 rad inclination despite the fact that
the initial inclination estimate is correct, followed by a noisy
estimate of the inclination after the first burn, followed,
finally, by a biased estimate of the inclination after the
second burn.

Next, we also change the orbit of the second observing
satellite by giving it an inclination−0.2 rad. After an initial
transient, Figure 10 shows an improved ability to estimate
the true inclination.

Finally, we increase the sample interval toh = 10 sec.
In this case, the filter diverges. However, for an initial true
anomaly error of 5 degrees, it can be seen from Figure 11
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Fig. 6. Estimated eccentricity. The target performs unknown
1-second burns att = 100 sec andt = 200 sec. The initial
eccentricity ise = 0, corresponding to the initial circular orbit,
while the eccentricity after the first burn ise ≈ .35, and the
eccentricity after the second burn ise ≈ .59. Assuming a 1-second
measurement interval and measurement noise with a standard
deviation of0.01 km, the estimated eccentricity follows the true
eccentricity. The apparent bias for the initial eccentricity e = 0 is
an artifact of the constrainte ≥ 0. The full extent of the initial
estimate transient is not shown.
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Fig. 7. Estimated eccentricity. This simulation is analogous to
Figure 6, where now the sample interval ish = 10 sec. Again, the
full extent of the initial estimate transient is not shown.

that the filter can detect changes in the target’s inclination.

10. CONCLUDING REMARKS

Under idealized assumptions on the astrodynamics of
bodies orbiting the Earth, we developed a sampled-data
Kalman filter for range-only observations provided by a
constellation of 4 low-Earth orbiting satellites in circular,
equatorial, geosynchronous orbits. We studied the ability
of the filter to acquire and track a target satellite in
geosynchronous orbit as a function of the sample interval,
initial true anomaly error, and measurement noise standard
deviation.

This study complements previous studies that have con-
sidered combinations of angle, range, and range-rate mea-
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Fig. 8. Estimated inclination. Although the filter correctly con-
verges to the target’s initial inclination of0 rad, the filter fails to
detect the changes in inclination due to the target’s maneuvers.
Numerical tests suggest a lack of observability by the observing
satellites.
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Fig. 9. Estimated inclination. In this case, the orbit of the
first observing satellite by given an inclination of−0.1 rad. A
strong transient prevents the filter from estimating the initial 0 rad
inclination despite the fact that the initial inclination estimate is
correct. The estimate of the inclination after the first maneuver is
noisy, while the estimate of the inclination after the second burn
is biased.

surements by considering range measurements alone and by
considering the effects of infrequent measurements.

A surprising discovery of our study is the apparent
inability of a constellation of 4 LEO satellites to track
a maneuvering target satellite that changes its inclination.
Naive numerical tests based on linear time-invariant no-
tions suggest that the dynamics of the target satellite are
unobservable using the available measurements. Therefore,
future research will seek to apply nonlinear observability
tests [24–26] to better understand how observability of the
target’s dynamics depends on the geometry of the observing
constellation and the types of available measurements.
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Fig. 10. Estimated inclination. In addition to the inclination of the
orbit of the first observing satellite, the second observingsatellite
is given an inclination of−0.2 rad. After an initial transient, the
filter provides improved estimates of the target’s inclination.
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Fig. 11. Estimated inclination. In addition to the inclinations of
the orbits of the first and second observing satellites, the sample
interval is increased toh = 10 sec. Despite this constraint, the
filter retains the ability to detect changes in the target’s inclination.
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